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The effect of entanglements on diffusion in a polymer melt 
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Theoretical Physics Department, The Schuster Laboratory, University of Manchester, 
Manchester M13 9PL, UK 

Received 2 February 1973 

Abstract. The motion of a macromolecule in a polymer melt is considerably restricted by 
interchain entanglements. This paper considers the topological constraints on the motion 
of a chain using the Wiener integral model. Two methods are considered : (i) a pipe constraint, 
(ii) the exact topological invariants. A Smoluchowsky-like equation is obtained by both 
methods and it is found that a point r(s, f) on the chain has a correlation function 
( ( r ( s ,  t )  - r(s,  t ’ ) ) 2 )  a It - t’l 114 as opposed to the / t  - t’l dependence of a free Rouse-like 
chain. The type of diffusion considered is called cooperative diffusion and is contrasted to 
the reptative diffusion of de Gennes. 

1. Introduction 

The motion of a long chain molecule in bulk polymeric material is considerably restricted 
by interchain entanglements. This is demonstrated by the marked increase in molecular 
weight dependence of viscosity above a critical value M ,  . The experimental situation is 
reviewed by Porter and Johnson (1966) and by Ferry (1970). Since bulky side groups 
do not seem to inhibit entanglement coupling it would appear that considerable chain 
lengths are involved, as opposed to the point action of cross links. 

There is no satisfactory statistical mechanical theory of entanglement effects on 
diffusive motions. Attempts have been made to modify the Rouse model (see Rouse 
1953) by supposing the local friction constant to be increased depending on the degree 
of entanglement (see eg Ferry et a1 1955 and Bueche 1955). These theories are not derived 
in an a priori fashion, and assume that the friction coefficient is the same for all modes of 
motion. 

This cannot be true since the longer the mode of motion, the more inhibited it must 
be. Chompff and Duiser (1966) and Chompff and Prins (1968) have performed a normal 
mode analysis for an entangled network, but their treatment assumes the entanglements 
to be acting at a point. The same criticism can be raised of the transient network model 
as advanced by Lodge (1964) and others. 

If one chain is considered to move in frozen surroundings one can easily obtain an 
estimate of the diffusion of a point on the chain, provided the chain is very long (de 
Gennes 1971). In this paper we shall always work with the gaussian chain in its continuum 
limit, that is, the monomers labelled rI  , r 2 , .  . . are replaced by the continuous function 
r(s, t ) ,  and the freely hinged condition is translated into the Wiener functional probability, 
that is, the probability of finding a configuration r(s) is given by 

P([ r ] )  = JV exp( -; r”(s)ds), 

t Now at the Cavendish Laboratory, Cambridge. 
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where Jt” is the normalization and 1 the step length. Now consider at any one time to a 
chain which has a configuration R(s,to) as shown in figure 1. The circles represent 

frozen obstacles. Suppose the motion is now essentially one dimensional, that is, at a 
subsequent time 

4% t )  = R(s, 3 t o )  (1.2) 

so that the motion of the chain just maps different points of the chain to points of the 
original chain or near them. I t  must be emphasized that R and r are random walks and 
the diagram grossly oversimplifies the true complexity of the configuration. Now it is 
known (and the result will be reproduced below in (3.6)) that if one point on a free chain 
is considered say r(a, t )  

( ( 4 4  t )  - 4% t o ) ) 2 )  a Jct - t o )  

(W, t )  - x(a, t o ) ) 2 )  a Jct - to). 

which is true also in one dimension 

(1.3) 
If we assume that the same argument will apply along R(s, t) ,  then call the distance along 
R, S ,  that is, 

( 1.4) 

(1.5) 

(1.6) 

(1.7) 
The precise coefficient will be a constant times 15/4(k?7~)114. This motion has been 
named reptation by de Gennes. In a real melt however the whole network is not frozen 
and will also be changing by diffusion, and a treatment of these cooperative effects seems 
necessary to calculate the viscosity of the system. We will consider, therefore, a model in 
which the chain moves in a statistically defined ‘pipe’, which itself diffuses. The pipe 
will firstly be introduced in an intuitive way, and self-consistency arguments will be used 
to calculate the time scales, a method which needs some arbitrary constants to be 
employed. The second approach will be a direct attack ab initio, leading to much more 

S(s, t o )  = s. 

Then 

((s(s, t )  - s(s, t o V )  a J(t  - to). 

((4% t )  - R(s, t o ) ) 2 )  a M s ,  t )  - S(s, t o l l  

( ( 4 ~ ~  t )  - R(s, to))2> a ( t  - 

But R is itself a random walk, so the distance 

the normal result. Hence 
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difficult mathematics, but which evaluates the constants in terms of step length, kT v 
intrinsic molecular viscosity and p the density. These approaches agree and again give 
point diffusion to go like It - t , ~ ' ' ~ ,  but now obtain also the structure of the coefficient 

(1.8) ((+, ~ ) - - v ( ~ ,  t ' ) ) ~ )  = ~ l t - t ' y 4  

where A is a numerical constant. The viscosity is discussed in the second paper. 

2. The pipe constraint 

As a first attempt to incorporate topological constraints on the diffusion motions of a 
chain, we consider it to be 'hemmed in' by a pipe, composed of the other chains of the 
system. This is shown in figure 1 .  The chain can clearly move by two possible mecha- 
nisms. 

(i) It can reptate its way back and forth along the pipe in the manner considered by 
de Gennes. If the system is densely packed, the chain width ( -  5 A) may be comparable 
with the diameter of the pipe ( - 8  A), and reptation may be severely inhibited, since it 
will be hard for very much length to be stored in the pipe by, for example, de Gennes' 
defects. At higher temperatures we would expect the density of the system to decrease, 
widening the pipe and perhaps allowing reptation. 

(ii) The pipe is composed of other chains. As these chains move so does the pipe. 
In turn the chain constrained by the pipe moves, and so on. This type of motion, which 
we will term cooperative diffusion, will be the dominant mechanism for a densely 
packed system. As the chain moves, the pipe tends to constrain it to where it was at  an 
earlier time. A free chain would have an entropy S a -(3k/21)J r" ds from (l.l),  
hence a free energy F = (3k721)J 1'' ds will appear in its lagrangian. The Langevin 
equation resulting will have the form 

mi;(& t )  + vqs, t )  - EY"(S, t )  = $(s, t) ,  (2.1) 

where the dots denote differentiation with respect to time t and primes with respect to 
arc parameter s. The frictional term v i  arises from the friction of the chain rubbing 
against the other chains. CY" is the intramolecular entropic force, that is, c = 3kT/l, 
$(s, t )  is a random force arising from the microbrownian motion of the system, and 
d ( s ,  t )  is the inertial term, which will be small and neglected in the following calculations. 
The pipe constraint is now expressed by assuming the pipe causes an harmonic force on 
the chain centred where the chain was an earlier time. To do this we note that (2.1) is 
put in normal mode form by employing the Fourier transform 

27c 

It is only reasonable to suppose that different normal modes will notice the time drift 
of the pipe on different time scales so that if ~ ( w )  is introduced as the memory time, we 
can postulate an equation 

v~. (o ,  t )  + CO~Y(W,  t )  +&(U, t )  - Y(O, t - o(w)) = @(U, t). (2.2) 

We could choose much more complicated forms, and have indeed chosen the simplest 
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form we could think of which still retains the essence of the problem. However it is to 
be noted that p is taken independent of o, since in previous calculations in rubbers, 
where the chains do not diffuse on a long time scale because of vulcanization, one can 
evaluate p directly using the methods of the second part of this paper (eg Edwards and 
Kerr 1972) and p is not a function of o. (It turns out to be proportional to p”’ where 
p is the density of material, a result reproduced below.) 

If we consider the chain r (s ,  t )  to be of finite length L, we must use the Fourier series 
in n rather than a transform; however the latter form is more convenient and we can use 
it provided we remember that by (LI2n)J  d o  we really mean E,, and by o, 2nnlL. 

Taking the Fourier transform E ,  on t ,  (2.2) becomes 

cw’r(w, E )  + iEvr(o, E )  + p{ 1 - exp( - iEz(o))}r(o, E )  = @(U, E). (2.3) 

From this equation we can solve the motion in terms of ~ ( w ) ,  and then apply a self- 
consistency argument to determine ~ ( w ) .  This argument will reflect the cooperative 
diffusion mechanism. 

We could alternatively regard the chain r (o ,  t )  as moving quickly, while its surround- 
ings, the chains forming the pipe, move more slowly. The chain would then be expected 
to feel a potential between 40, t )  and its average over a collision time with the pipe. 
Thus the new term of (2.2) would now be 

leading to the Langevin equation, 

A similar argument could be applied to determine T ( W )  in this case. For T(W)  small, 

% iET(o). 
exp( - iEt(o)) - 1 

iEz(w) 
1 - exp( - iEz(o)) = 2 

Thus if p’ = 2p we have the same approximation to the Langevin equation 

{EO’ + iE(v + pz(o))}r(w, E )  = @(U, E )  (2.7) 

for both cases. We will work with (2.2) rather than (2.5), but the latter may represent an 
interesting alternative view of the problem. 

3. The case when t is small 

The long time-scale motions of the chain are those for which E is small in equation (2.3). 
If we further suppose T to be small we can make the approximation of equation (2.6). 
The effect of the entanglements is now seen to be an increased friction coefficient v + ~ T ( o )  
which is o, and hence mode dependent. The chain in equilibrium has a random-walk 
configuration and we require 

(3.1) ((r(s,  r)-r(s’, t ) ) 2 )  = l ~ s - s ’ ~ ,  
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where 1 is the effective monomer length. Now, 

((r(s, t )  - r(s‘, t))’) = (r(w,  E)r*(w, E))2(1- cos 01s - s‘l) d o  dE 
27c 

with 

from (2.7) Thus 

on integrating over E. The unentangled free Rouse chain is the special case p = 0, 
t = 0, for which 

using the substitution x = 02( t - t ‘ l ,  Equations (3.5) and (3.6) have relaxation times 

for the entangled and free chains respectively. The entangled chain is seen to have an 
additional relaxation of characteristic time 7’, where 

For cooperative diffusion, we would expect the relaxation of the pipe to be this 
additional relaxation, that is, 7 = 7‘. Since 7 is positive for all w,  

?(U) = +{1+( 2co l+y)1’2] 
on solving for ?(U). The entangled chain thus has relaxation times A(o), 

v+pL5(w) = L [ 2 . w 2 + p j l + (  l+T) 4“ l j 2  }I. 
2c204 

n(w) = 
€U2 

This has the long (o small) and short (o large) wavelength limits 

PV V - 
204’ EO2 

respectively. 

(3.9) 

(3.10) 

(3.11) 
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The former times correspond to configurational rearrangements beyond the entangle- 
ments, and the latter to the free rearrangements between entanglements. These are 
then the two sets of relaxation times, characteristic of viscoelastic properties, but there 
is a transition between them via (3.10). Since p is an entanglement parameter depending 
on the number and strength of the entanglements, the larger the value of p, the sharper is 
the transition between the two sets of relaxation times. Substituting (3.9) into (3.5) 

((4% r )  - 4% t’N2) 

- ( ~ o ~ / v ) i t  - t’( 

(3.12) 

since the long time-scale behaviour is dominated by the long wavelength modes. Hence 

(3.13) 

and the displacements of one point on the chain obey a t1I4 diffusion as opposed to the 
t1I2 diffusion of a free chain. This coefficient differs by the factor p from that of reptation. 
If p, as is derived later, varies as kT(p13)”’, the coefficient contains ( k ~ v ) ” “ l S ~ “ / ( p l 3 ) ” *  
as against the reptation expression (k77v)”“15’“. 

4. The case when t is large 

In general E and t may not be small and instead we should consider all of (2.3) rather than 
its approximation (2.7). Then 

((4% t )  - 4% r Y 2 >  

where (@(U, E ) .  +*(U, E ) )  will have a new value to be calculated. If we consider the long 
time-scale motions which have E + 0, but make no restrictions on 7,  the denominator 
of the integrand of (4.1), that is, 

(eo2+p(1 -cos E t ) } 2 + ( v E + p  sinE7)’ N ~ ’ o ~ + E ~ { ( v + p ~ ) * + p ~ o ~ t ~ ~  (4.2) 

for small E.  For t also small we obtain the approximation c 2 0 4  + E2(v+ p ~ ) ~  used above. 
For large t, a better approximation is 

E 2 0 4  + E 2 p 7 2 ( d  + p). (4.3) 

The condition that, at any one instant, r (s ,  t )  be a random walk in this case gives 

2tl 
(Mo, E ) .  +*(U, E ) )  = - L {pt2(co2 + p))  1’2 (4.4) 
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and thus 

The same self-consistent technique of solving for r ( w )  gives 

and hence the relaxation times A(o), 

v (p’”(€oi  + p p 2  + A(o) = - 
€02 EO2 

(4.7) 

with the same asymptotic limits as (3.11). Identical behaviour is obtained as that when 
r was assumed small except in the intermediate range of o, which is unimportant. It 
would appear that we have chosen a satisfactory criterion for z(o) in cooperative dif- 
fusion. 

5. Short time-scale behaviour 

For shorter times, / t  - ~ ‘ 1 ,  we must consider the Langevin equation for larger values of E. 
As E --* cc the left-hand side of (4.2) is better approximated by 

c 2 0 4  + v2E2 + 2p(co2  + p )  (5.1) 

on replacing cos E r  and sin Er by their average value which is zero. Clearly as ET --* x 
cos ET and sin Er oscillate increasingly rapidly, and such averaging is possible. Thus 

(@(U, E ) .  @*(U, E)){1 -COS E(t  - t ‘ ) ]  d o  dE - --- 
E 2  +c2w4/v2 + ( 2 p / ~ ~ ) ( c 0 ~  + p )  

Again using the criterion that r(s, t )  be a random walk, 

and 
U2 

( ( r (s ,  t ) - r ( s ,  t ’ ) ) 2 )  = I (1 -exp[{(ro2+p)2+p2}1‘2t/~]) do.  (5.4) J- CO 

As o + 0 we have a factor (1 - exp( - 2p2 t / v ) ) ,  independent of  o, in the integrand. This 
corresponds to the chain relaxing back to its original state, there being no net diffusion 
of the longest wavelength modes. The only motions are on the short length scale between 
entanglements, as can be seen on substituting o -, CO in (5.4), when we get Rouse-like 
behaviour of the shortest modes. 

Thus, on a short time scale, there is no overall motion of the chain, but short length 
Rouse-like behaviour occurs between entanglements. On a longer time scale, long scale 
motions occur causing a very slow t1j4 net diffusion of a point on the chain. 
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6. The Smoluchowski equation 

The dynamics of an unentangled chain can be expressed in the diffusional limit by a 
Smoluchowski equation, the Rouse equation, which for a continuous chain of length L 
can be written (see Edwards 1970, Edwards and Goodyear 1972) in Fourier form 

G(v, r', t ,  t ' )  = n 6(r(w)-r(o'))d(t-  t ')  
w 

(6.1) 

and so each mode has the diffusion coefficient k v v .  
We can write down a similar equation for an entangled chain, but from Q 3 we note 

that we must have the friction coefficient v replaced by v + p ~ ( w )  with the equilibrium 
solution maintained as 

that is, 

G(u, Y', t ,  t ')  = n d(r(w)-r(w'))b(t - t ' ) ,  
0 

6 6 3L 

9(o) = "[ V 1 +&l+ ( 1  +?) 1'2]] - l .  

The value of the mode diffusion coefficient is seen to be mode dependent. 

with ~ ( w )  given by (4.6). Then, 
From 5 4, we can again satisfy equation (6.2), by replacing v of (6.1) by p112(ew2 + p)1/2 

Both (6.3) and (6.4) give the same limiting behaviour for small and large U. For small w 

while for large w 

k T  
9 ( w )  = - 

V 

independent of o, corresponding to the fact that short scale motions are uninhibited by 
entanglements. The Smoluchowski equation (6.3) is valid in the long-time limit con- 
sidered in $9 3 and 4. It does not describe the short-time behaviour of Q 5. 

The entangled chain has been shown to have two sets of relaxation behaviour. For 
large U, corresponding to the short wavelength modes between entanglements, the 
chain shows Rouse-like behaviour. For small w, the motion beyond entanglement 
spacings, the motion is seen to be severely inhibited. The method of representing the 
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topology by a gaussian pipe is so far somewhat arbitrary, and so in the following sections 
we consider the direct use of topological invariants (Edwards 1967,1968) and how they 
can be applied to cooperative diffusion. We will obtain results similar to those of these 
sections. 

7. Topological invariants 

Entanglements can be categorized by an infinite series of invariants. The topology of 
the curves rl(s) and r,(s) of figure 2 can be described by the first invariant I , , ,  

which takes the value 471n, where n is the net number of times the curve r ,  passes through 
the surface S ,  with r l  as perimeter. For (a) clearly n = 0, whilst for (b) n = k 1, the sign 
depending on the convention of direction of the integrations. A similar result can be 
shown for infinitely long but open curves and will be approximately true for open 
finite length curves. I , ,  then represents the constraint that the two curves cannot pass 
through one another, if I ,  , is fixed. In general there is an infinite set of such invariants, 
but the vital one is the first and we confine ourselves to it. It represents the simple direct 
entaglement between two chains. Considering only I , ,  is analogous to ignoring all but 
two-body forces in a many-body calculation. 

Figure 2. 

The chain r(s, t )  in the molten polymer, is considered to have the constraint 

imposed on it, for all i = 1,. . . , N ,  where 

1 1.  = - (dr x dRi)V- 
' 4n Ir -RA 

(7.3) 

and is the first invariant between r(s, t )  and R(s, t )  divided by 471. We assume that Y(S, t )  
has N entanglements at various places along its length, and that these act essentially 
independently of one another. This being so, we relax the constraint (7.2) slightly, 
giving 

N N 

This makes the constraint somewhat easier to handle when we come to average over all 
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initial entanglement distributions. We can now write down the equilibrium distribution 
of a chain originally set up with entanglement parameter n, 

p,[r(s)] = JV exp -- r"(s) ds a1,,. ( il JoL ) 
The Kronecker delta function can be parametrized to give 

(7.5) 

(7.6) 

The free chain distribution p[r(s)]  can be recovered by summing over all the possible 
values of n weighted by the probability distribution function, P(n), of their initial oc- 
currence, 

(7.7) 
n 

If Gn(r1, r 2 ,  sl, s2) is the Green function corresponding to p,[r(s)] we can write 

G,(r,, r 2 ,  sl, s2) = dA e-'"G,(r,, r 2 ,  sl, s2) (7.8) 

which defines G, 

G, will be the Green function for the diffusive motion arising from a Langevin equation 
with a Lagrange multiplier A referring to the topology, 

vL(s, t )  + cr"(s, t )  + +(s, t )  + ilV,I = 0. (7.10) 

The Lagrange multiplier A has a value determined by the solution of the equation. I 
has some value, n, for a particular solution r ( s ,  t), and in general, n will depend on the 
initial configuration, specifying its topology. Associated with n is P(n), and thus 

= A(n, [r(s, t)]). (7.11) 

We will assume that we can average over an ensemble of chains with topology n in 
such a way that l is merely a function of n and not in addition a functional of r(s, t). 
In this case ,I itself is a measure of the topology of the chain, and there exists a probability 
distribution function Q(A) of A. Then 

G, = xeiAnG, (7.12) 
n 

and l and n constitute a Fourier pair. It is straightforward to show that Q(A) and P(n) 
are Fourier conjugates, with the knowledge that P(n) = P( - n), I being as likely positive 
as negative. Assuming the chains were set up originally at random, we would expect 
P(n) to be gaussian 

P(n) cc exp( - y n 2 )  hence Q(A)  cc exp( - TA2). (7.13) 

If the chains are very long, and there are many entanglements, N ,  contributing to I ,  we 



Efect of entanglements on diflusion in a polymer melt 1179 

would expect P(n) to have a large variance, tending to proportionality with N .  Then 

1 
Y K ”  T c c N  (7.14) 

and 

1 
N ‘  

- - 
n2 K N ,  R2 K-  (7.15) 

The importance of this is that we may treat 1, as opposed to n, as a meaningful entangle- 
ment parameter. 

The term i i V J  in (7.10) is a ‘mixing term’ in that it couples many different modes of 
motion. We have seen however that we can in many ways regard V,Z as a random 
variable. As such we can apply the standard techniques for deriving transport equations, 
but must always bear in mind the fact that many assumptions go into the standard 
theory, and the difficulty of calculating higher order terms leaves a question mark 
over the validity of the standard methods. We can now argue that G, can be shown 
to satisfy the modified Smoluchowski equation 

= n S(r(o)  - r(o’))d(t - t’), 
w 

where 

and 

V 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

The averages are over the self-consistent distribution of the entangled chains. Equation 
(7.16) has been derived by Kerr (1971) and by Grant (1972). h(o)  is a diffusive force, 
whereas k(w) is a dynamical friction and represents a kind of excluded volume effect, 
since the equilibrium solution 

P ,  = 0 

is the probability distribution of a walk of entanglement level 1. We will find that h 
dramatically alters the behaviour of the whole equation, whereas a, does little more than 
produce a 2 dependent effective step length. To the accuracy used in the next section we 
can replace zi, by unity and concentrate on the effect of h(w). 
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8. The self-consistent method for 9*(0) 

If the entanglements are independent of one another 
N 

<V-J,(O)VJ,(~)) 

where 

1 
dv x dR,V-. 

471 Ir - R,I 
I =-fl 1 

Now 

6 
+terms in - = (dr x dR,)---V- 

= (dr x dR,)b(r - R,) eiosr + 

6 1 
6r (o )  dr 6 4 4  lr-& 

and this first term will be the dominant term, so that 

x6(v’-R~)exp{iw(s,-s;)} ds, ds; ds2ds;. (8.5) ) 
The important point to notice is that h(w) is proportional to N ,  for a sufficiently large 
number of entanglements, and that it can be expressed as an integral over the s. This 
will also be true if we consider the other terms of (8.3). 

To ensure the convergence of the integrals, two types of restriction on the range of 
the variables must be imposed. (i) After a very long period of time, the chain will wriggle 
out of its particular original topology. The head and tai! of the chain ensure a finite 
lifetime of one particular grouping of cooperative diffusion. Thus the range of t must 
be finite. (ii) The minimum meaningful length on a chain is I ,  the effective step length. 
Thus we must restrict the range of s, , si , s2 ,  si to*(!, L). 

With these restrictions, h(w) converges for all finite o, and is therefore analytic. 
This being so we can express it as a power series in o. 

(8.6) 
where h, wil! be negative. The series contains even powers of o only, because h ( o )  is 
the Fourier transform of a real function. Thus 

h ( o )  = ho + h2w2 + h4W4 + . . . , 

(h,  + h 2 0 2  +h404+ . . .). 
V 

The assumption of the independence of the entanglements implies that h(w), and hence 
hi for all i ,  are proportional to N ,  the number of entanglements. For N large, we have 
said that cc 1/N, and for most chains A 2  3c 1/N. We would thus expect gA(o) to be 
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independent of N .  However, for small values of N ,  we may be unable to assume the 
gaussian nature of I ,  or the independence of the entanglements. Clearly if no entangle- 
ments are present, A’(kT/v)’h(o) is zero ; but this term will have a large finite value 
independent of N for a high entanglement density. We might expect i2h(w) to be pro- 
portional to N for very small N ,  becoming asymptotically constant for N greater than 
some N o .  We can write equation (8.7) in the form 

k T  
9j.(w) = - - A 2 9 0 + A 2 9 2 , 0 2 + A 2 ~ 4 4 0 4 +  . . . , (8.8) 

V 

where clearly, 

g2 = - - h,  etc. (“:) (8.9) 

An infinite chain would be expected to show no diffusion of the w = 0 mode, since it 
contains an infinite number of entanglements. As such, 

giving 

9j.(w)lm = 0 = 0. 

(8.10) 

(8.11) 

Now gj,(w) cannot be negative for any CO, as such kT/v must be the upper limiting value. 
the asymptotic limit of A2g0 for any length of chain for which N > N o .  Thus, 

i2g0 1: kT/v 

and 

9A(w) = i.292w2 +jv294w4+ . . . , (8.12) 

where g2 must be positive. 

Take as a first approximation 
We can, in principle, now obtain the values of 8,  g4 etc by a self-consistent argument. 

gj,(w) = A29;”w2, (8.13) 

then we have the Smoluchowski equation, 

(8.14) 

to describe the motion of the chain. Thus, to a first approximation, h(w) can be averaged 
against the distribution given by this equation.. In this case 

h(w) = h(w, G&‘)) 

and hence 

(8.15) 
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However from (8.12) we required 

129i1)(9$1)) = kT/v 

which can be inverted to give 

(8.17) 

(8.18) 

and the value of 9:’) determined. The condition (8.12) implies the value of 9$’) and g2 
is known to a first approximation. 

To calculate Q4+ a second approximation of (8.12) 

gj.(o) = i29:”wz + &2kZ’Cu4 (8.19) 

needs to be considered, By a similar argument 9i2) can be calculated since 9i1) is known 
and then, using 9i2), the more accurate value of g2 namely BL2) can be calculated and 
so on. This argument leads to 9, = 3?9,02 for small o, and is based on the analyticity 
of 9,(w). This in its turn depends on the existence of the cut-offs, in particular the large 
L cut-off. Experience in other branches of statistical mechanics like critical phenomena 
and excluded volume problems suggests that one will be able to let L -, cc but the 
limiting process destroys the analyticity sodhat one expects the leading power to be 

9, ‘v i 2 % 4 0 2 + ) ,  (8.20) 

where y is small, but nonzero. To take y = 0 is a similar assumption to the molecular 
field theory of magnetization, or the Ornstein-Zernicke theory of correlations. We shall 
continue to assume (8.13), but comment again on (8.20) particularly with reference to the 
0.4 in the 3.4 power appearing in the viscosity. 

A similar comment applies to ctA(w). It may be that an accurate calculation could 
alter the dynamical friction term from o2 to 02+6 but one again will expect 6 to be small 
and this is not such a dramatic effect as that found in h(o) .  Thus the Smoluchowski 
equation can be taken to be 

and this equation will be taken to describe the behaviour of the long wavelength modes. 

9. The correlation function <(u(s, t)-u(s, t’))*> 

The calculations of the previous two sections have obtained a separable Smoluchowski 
equation. This could have been derived from a Langevin equation of the form 

qw,  t )  + rw2r(o, t )  = $(a, t). 
kT 

A2.5&oZ 
(9.1) 

In other words, the Langevin equation (7.10) has been made separable, a chain whose 
topology is represented by the Lagrange multiplier A, having an effective friction coeffi- 
cient kTi.2Bp2 ; this is clearly both mode and topology dependent. For a chain picked 
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at random, 1 may be unknown, and so we wish to average over the topology in some 
way. 

The correlation function ( (r(s,  t ) - r ( s ,  t ‘ ) )2 )1  can be derived from (9.1) for a chain 
with topology A. Now 

where, if the criterion 

for a random walk is to be satisfied 

Then 

with 

We are now in a position to average over the topology A to consider the average behaviour 
of a chain picked at random in the melt. If Q(1) is the probability distribution function, 

We know that 1’g2 is independent of N ,  for N > N o .  We would expect that on the 
average, a chain would obey the Smoluchowski and Langevin equations, 

G = n d(r(o)-r(o‘))b(t-t ‘) (9.10) 
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and 
kT 

--L(w, t )  + cw2v(w, t )  = +(U, t) ,  
B W 2  

(9.11) 

respectively, where B = F q .  
These equations represent the motion of a chain with the average topology. It must 

be remembered that a real chain will have qualitatively the It - t’J1/4 behaviour, but the 
magnitude of the diffusion will depend to some extent on the particular topology 
involved. 

10. Conclusions 

The same type of behaviour results from the constraint represented by the topological 
invariants, as from that represented by the pipe considered in the first half of this paper. 
Both of the constraints refer to cooperative diffusion as opposed to the reptative diffusion 
considered by de Gennes. The majority of chains will have friction and mode diffusion 
coefficients close to the average values of (9.10) and (9.11). Some chains, because of their 
nonaverage topology, will have different values for these coefficients. However their 
form, and the type of motions of the chains will be the same as that of the average. 

This calculation has ignored the dynamical friction term; this term would cause a 
slight modification in the behaviour of the chains. Being dependent on i, it may cause 
slight differences in the form of behaviour for chains of differing topology. 

We have only considered w to be small. This is apparent from the power series 
expansion for gA(w). For large w, we would expect k(w) to tend to zero, giving the second 
set of relaxation times for the short scale Rouse-like motions between entanglements. 

The sections on topological invariants are to be viewed as justifying the form of 
behaviour of ~ ( w )  and 9 ( w )  of the pipe constraint. It is now clear that p will not depend 
on N ,  the total number of entanglements the chain has, but rather on the density and 
strength of entanglements per unit length of the chain. 

Since 9 ( w )  cc w2 it is tempting to conclude that the chain has an overall diffusion, 
proportional to l/L3 in the same way that the Rouse chain, which has 9 ( w )  = k v v ,  

has 9 = kT/vL. We note that w = 2rrn/L. A calculation has been given by Grant. 
The difficulty however is that the w = 0 mode has been implicitly excluded in our 
calculations and the overall diffusion coefficient really refers to this translational mode. 
If 9 can be defined, and is proportional to 1/L3, and hence to l /M3 where M is the 
polymer molecular weight, then it is interesting to compare this with the 1 /M2 reptate 
diffusion coefficient of de Gennes. Clearly if the latter occurs it will dominate the co- 
operative diffusion, but as we considered earlier, reptation may be effectively suppressed. 
Unfortunately there is little experimental evidence as to 9 for an entangled polymer 
melt although Bueche (1968) considers the best fit to experiment is 9 - l/M3’4. 

In a following paper we show how the diffusive motions can be used to derive an 
expression for the zero shear coefficient of viscosity. We will find that this is proportional 
to M 3 .  
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